Metal ion inhibition of nonenzymatic pyridoxal phosphate catalyzed decarboxylation and transamination.
نویسندگان
چکیده
Nonenzymatic pyridoxal phosphate (PLP) catalyzed decarboxylations and transaminations have been revisited experimentally. Metal ions are known to catalyze a variety of PLP-dependent reactions in solution, including transamination. It is demonstrated here that the rate accelerations previously observed are due solely to enhancement of Schiff base formation under subsaturating conditions. A variety of metal ions were tested for their effects on the reactivity of the 2-methyl-2-aminomalonate Schiff bases. All were found to have either no effect or a small inhibitory one. The effects of Al(3+) were studied in detail with the Schiff bases of 2-methyl-2-aminomalonate, 2-aminoisobutyrate, alanine, and ethylamine. The decarboxylation of 2-methyl-2-aminomalonate is unaffected by metalation with Al(3+), while the decarboxylation of 2-aminoisobutyrate is inhibited 125-fold. The transamination reaction of ethylamine is 75-fold slower than that of alanine. Ethylamine transamination is inhibited 4-fold by Al(3+) metalation, while alanine transamination is inhibited only 1.3-fold. Metal ion inhibition of Schiff base reactivity suggests a simple explanation for the lack of known PLP dependent enzymes that make direct mechanistic use of metal ions. A comparison of enzyme catalyzed, PLP catalyzed, and uncatalyzed reactions shows that PLP dependent decarboxylases are among the best known biological rate enhancers: decarboxylation occurs 10(18)-fold faster on the enzyme surface than it does free in solution. PLP itself provides the lion's share of the catalytic efficiency of the holoenzyme: at pH 8, free PLP catalyzes 2-aminoisobutyrate decarboxylation by approximately 10(10)-fold, with the enzyme contributing an additional approximately 10(8)-fold.
منابع مشابه
Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.
Two refined structures, differing in alkali metal ion content, of the bifunctional, pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase (DGD) are presented in detail. The enzyme is an alpha 4 tetramer, built up as a dimer of dimers, with a subunit molecular mass of 46.5 kDa. The fold of DGD is similar to those of aspartate aminotransferase, omega-amino acid aminotransferase and ty...
متن کاملpH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase.
The pH dependence of the steady-state kinetic parameters for the dialkylglycine decarboxylase-catalyzed decarboxylation-dependent transamination between 2-aminoisobutyrate (AIB) and pyruvate is presented. The pH dependence of methylation and DTNB modification reactions, and spectroscopic properties, is used to augment the assignment of the kinetic pKa's to specific ionizations. The coincidence ...
متن کاملVanadium Catalysis in the Nonenzymatic Transamination of 8-Aminolevulinic Acid
By nonenzymatic model reactions, the influence o f vanadium (V 0 2+, V 0 3~) and other metal ions (A l3+, Fe2+, Fe3+, Zn2+, N i2+, Cr3+) on the transamination of 4,5-dioxovaleric acid (D O VA) with L-alanine (A la ) to 6 -aminolevulinic acid (<5-ALA) and pyruvic acid (P A ) with pyridoxal phosphate (P L P ) is investigated. The examinations o f the partial reactions show that V 0 2+, V 0 3~ and...
متن کاملRapid kinetic and isotopic studies on dialkylglycine decarboxylase.
The two half-reactions of the pyridoxal 5'-phosphate (PLP)-dependent enzyme dialkylglycine decarboxylase (DGD) were studied individually by multiwavelength stopped-flow spectroscopy. Biphasic behavior was found for the reactions of DGD-PLP, consistent with two coexisting conformations observed in steady-state kinetics [Zhou, X., and Toney, M. D. (1998) Biochemistry 37, 5761--5769]. The half-rea...
متن کاملRole of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase.
Dialkylglycine decarboxylase (DGD) is a pyridoxal phosphate dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. DGD uses stereoelectronic effects to control its unusual reaction specificity. X-ray crystallographic structures of DGD suggest that Q52 is important in maintaining the substrate carboxylate in a stereoelectronically activated positio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2001